Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polarized Raman study on phase transitions in 0.24Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal

Identifieur interne : 000143 ( Chine/Analysis ); précédent : 000142; suivant : 000144

Polarized Raman study on phase transitions in 0.24Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal

Auteurs : RBID : Pascal:13-0228948

Descripteurs français

English descriptors

Abstract

Polarized Raman spectroscopy was performed to investigate the local lattice structure and phase transitions of unpoled 0.24Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 (0.24PIN-0.43PMN-0.33PT) single crystal in the temperature range from 30 °C to 260 °C. MA- and Mc-type monoclinic phases were detected by micro-Raman spectra measured in different micro areas. Temperature dependence of Raman intensities, frequency shifts, mode merge and intensity ratios in the W and VH geometries were investigated. Our results indicated that the monoclinic-tetragonal (M-T) phase transition of the ternary relaxor-based ferroelectric single crystal 0.24PIN-0.43PMN-0.33PT occurs at 85 °C, which is verified by the mode merging from 520 cm-1 and 580 cm-1 to 500 cm-1, and the tetragonal-cubic (T-C) phase transition happens at 200 °C based on the vanishing mode at 780 cm-1 measured in the VH polarization.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0228948

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Polarized Raman study on phase transitions in 0.24Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.43Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-0.33PbTiO
<sub>3</sub>
single crystal</title>
<author>
<name>FENGMINWU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>College of Applied Science, Harbin University of Science and Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BINYANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ENWEISUN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>RUIZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DAPENGXU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physics, Jilin University</s1>
<s2>Changchun 130023</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name>JING ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Physics, Jilin University</s1>
<s2>Changchun 130023</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name>WENWU CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Harbin 150080</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Materials Research Institute, The Pennsylvania State University</s1>
<s2>University Park, PA 16802</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University Park, PA 16802</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0228948</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0228948 INIST</idno>
<idno type="RBID">Pascal:13-0228948</idno>
<idno type="wicri:Area/Main/Corpus">000B25</idno>
<idno type="wicri:Area/Main/Repository">000693</idno>
<idno type="wicri:Area/Chine/Extraction">000143</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cubic lattices</term>
<term>Ferroelectric materials</term>
<term>Indium Lead Niobates Mixed</term>
<term>Lead magnesium niobates</term>
<term>Lead titanates</term>
<term>Local structure</term>
<term>Monocrystals</term>
<term>Phase transformations</term>
<term>Polarization</term>
<term>Raman spectra</term>
<term>Relaxor</term>
<term>Spectral line shift</term>
<term>Transition element compounds</term>
<term>Vibrational modes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Spectre Raman</term>
<term>Structure locale</term>
<term>Transformation phase</term>
<term>Déplacement raie</term>
<term>Polarisation</term>
<term>Mode vibration</term>
<term>Monocristal</term>
<term>Relaxeur</term>
<term>Matériau ferroélectrique</term>
<term>Réseau cubique</term>
<term>Titanate de plomb</term>
<term>Indium Plomb Niobate Mixte</term>
<term>Composé de métal de transition</term>
<term>Magnoniobate de plomb</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polarized Raman spectroscopy was performed to investigate the local lattice structure and phase transitions of unpoled 0.24Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.43Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-0.33PbTiO
<sub>3</sub>
(0.24PIN-0.43PMN-0.33PT) single crystal in the temperature range from 30 °C to 260 °C. M
<sub>A</sub>
- and M
<sub>c</sub>
-type monoclinic phases were detected by micro-Raman spectra measured in different micro areas. Temperature dependence of Raman intensities, frequency shifts, mode merge and intensity ratios in the W and VH geometries were investigated. Our results indicated that the monoclinic-tetragonal (M-T) phase transition of the ternary relaxor-based ferroelectric single crystal 0.24PIN-0.43PMN-0.33PT occurs at 85 °C, which is verified by the mode merging from 520 cm
<sup>-1</sup>
and 580 cm
<sup>-1</sup>
to 500 cm
<sup>-1</sup>
, and the tetragonal-cubic (T-C) phase transition happens at 200 °C based on the vanishing mode at 780 cm
<sup>-1</sup>
measured in the VH polarization.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>551</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Polarized Raman study on phase transitions in 0.24Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.43Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-0.33PbTiO
<sub>3</sub>
single crystal</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FENGMINWU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BINYANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ENWEISUN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUIZHANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>DAPENGXU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JING ZHOU</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WENWU CAO</s1>
</fA11>
<fA14 i1="01">
<s1>Condensed Matter Science and Technology Institute, Harbin Institute of Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>College of Applied Science, Harbin University of Science and Technology</s1>
<s2>Harbin 150080</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Physics, Jilin University</s1>
<s2>Changchun 130023</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Materials Research Institute, The Pennsylvania State University</s1>
<s2>University Park, PA 16802</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>98-100</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000502447070180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0228948</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Polarized Raman spectroscopy was performed to investigate the local lattice structure and phase transitions of unpoled 0.24Pb(In
<sub>1/2</sub>
Nb
<sub>1/2</sub>
)O
<sub>3</sub>
-0.43Pb(Mg
<sub>1/3</sub>
Nb
<sub>2/3</sub>
)O
<sub>3</sub>
-0.33PbTiO
<sub>3</sub>
(0.24PIN-0.43PMN-0.33PT) single crystal in the temperature range from 30 °C to 260 °C. M
<sub>A</sub>
- and M
<sub>c</sub>
-type monoclinic phases were detected by micro-Raman spectra measured in different micro areas. Temperature dependence of Raman intensities, frequency shifts, mode merge and intensity ratios in the W and VH geometries were investigated. Our results indicated that the monoclinic-tetragonal (M-T) phase transition of the ternary relaxor-based ferroelectric single crystal 0.24PIN-0.43PMN-0.33PT occurs at 85 °C, which is verified by the mode merging from 520 cm
<sup>-1</sup>
and 580 cm
<sup>-1</sup>
to 500 cm
<sup>-1</sup>
, and the tetragonal-cubic (T-C) phase transition happens at 200 °C based on the vanishing mode at 780 cm
<sup>-1</sup>
measured in the VH polarization.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70G84D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60C20D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60D70K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Structure locale</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Local structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estructura local</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transformation phase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase transformations</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Polarisation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Polarization</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mode vibration</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Vibrational modes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Relaxeur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Relaxor</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Matériau ferroélectrique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ferroelectric materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Titanate de plomb</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Lead titanates</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Indium Plomb Niobate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium Lead Niobates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>48</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>48</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Magnoniobate de plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Lead magnesium niobates</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="3" l="SPA">
<s0>Niobato de Magnesio y plomo</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>210</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000143 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000143 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0228948
   |texte=   Polarized Raman study on phase transitions in 0.24Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystal
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024